Evaluation of Osseointegration around Tibial Implants in Rats by Ibandronate-Treated Nanotubular Ti-32Nb-5Zr Alloy
نویسندگان
چکیده
Materials with differing surfaces have been developed for clinical implant therapy in dentistry and orthopedics. This study was designed to evaluate bone response to titanium alloy containing Ti-32Nb-5Zr with nanostructure, anodic oxidation, heat treatment, and ibandronate coating. Rats were randomly assigned to two groups for implantation of titanium alloy (untreated) as the control group and titanium alloy group coated with ibandronate as the experimental group. Then, the implants were inserted in both tibiae of the rats for four weeks. After implantation, bone implant interface, trabecular microstructure, mechanical fixation was evaluated by histology, micro-computed tomography (μCT) and the push-out test, respectively. We found that the anodized, heat-treated and ibandronate-coated titanium alloy triggered pronounced bone implant integration and early bone formation. Ibandronate-coated implants showed elevated values for removal torque and a higher level of BV/TV, trabecular thickness and separation upon analysis with μCT and mechanical testing. Similarly, higher bone contact and a larger percentage bone area were observed via histology compared to untreated alloy. Furthermore, well coating of ibandronate with alloy was observed by vitro releasing experiment. Our study provided evidences that the coating of bisphosphonate onto the anodized and heat-treated nanostructure of titanium alloy had a positive effect on implant fixation.
منابع مشابه
In vivo osseointegration of Ti implants with a strontium-containing nanotubular coating
Novel biomedical titanium (Ti) implants with high osteogenic ability for fast and good osseointegration under normal as well as osteoporotic conditions are urgently needed. Expanding on our previous in vitro results, we hypothesized that nanotubular, strontium-loaded (NT-Sr) structures on Ti implants would have favorable osteogenic effects and evaluated the in vivo osseointegration of these imp...
متن کاملPhotofunctionalised Ti6Al4V implants enhance early phase osseointegration
OBJECTIVES Ultraviolet (UV) light-mediated photofunctionalisation is known to improve osseointegration of pure titanium (Ti). However, histological examination of titanium alloy (Ti6Al4V), which is frequently applied in orthopaedic and dental surgery, has not yet been performed. This study examined the osseointegration of photofunctionalised Ti6Al4V implants. METHODS Ti and Ti6Al4V implants w...
متن کاملMechanical Characterisation and Biomechanical and Biological Behaviours of Ti-Zr Binary-Alloy Dental Implants
The objective of the study is to characterise the mechanical properties of Ti-15Zr binary alloy dental implants and to describe their biomechanical behaviour as well as their osseointegration capacity compared with the conventional Ti-6Al-4V (TAV) alloy implants. The mechanical properties of Ti-15Zr binary alloy were characterised using Roxolid© implants (Straumann, Basel, Switzerland) via ultr...
متن کاملThe Role of Metallic Substrate of Hydroxyapatite Coated Dental Endodontic Implants in Clinical and Pathological Success
Hydroxyapatite coatings have been used on metallic substrates in a variety of applications, including modifying the surface of human implants, bone osseointegration and biological fixation. In this paper, the effects of various kinds of metallic substrate on clinical and pathological results of in vivo tests are presented. Four kinds of endodontic implants i.e, stainless steel, cobalt base all...
متن کاملThe Role of Metallic Substrate of Hydroxyapatite Coated Dental Endodontic Implants in Clinical and Pathological Success
Hydroxyapatite coatings have been used on metallic substrates in a variety of applications, including modifying the surface of human implants, bone osseointegration and biological fixation. In this paper, the effects of various kinds of metallic substrate on clinical and pathological results of in vivo tests are presented. Four kinds of endodontic implants i.e, stainless steel, cobalt base all...
متن کامل